Understanding Metal Stamping

#1
Metal stamping is a cold-forming process that makes use of dies and stamping presses to transform sheet metal into different shapes. Pieces of flat sheet metal, typically referred to as blanks, is fed into a sheet metal stamping press that uses a tool and die surface to form the metal into a new shape. Production facilities and metal fabricators offering stamping services will place the material to be stamped between die sections, where the use of pressure will shape and shear the material into the desired final shape for the product or component.



This article describes the metal stamping process and steps, presents the types of stamping presses typically employed, looks at the advantages of stamping parts compared to other fabrication processes, and explains the different types of stamping operations and their applications.



Basic Concepts of Metal Stamping

Metal stamping, also referred to as pressing, is a low-cost high-speed manufacturing process that can produce a high volume of identical metal components. Stamping operations are suitable for both short or long production runs, and be conducted with other metal forming operations, and may consist of one or more of a series of more specific processes or techniques, such as:



1. Punching

2. Blanking

3. Embossing

4. Coining

5. Bending

6. Flanging



Punching and blanking refer to the use of a die to cut the material into specific forms, such as pole line hardware. In punching operations, a scrap piece of material is removed as the punch enters the die, effectively leaving a hole in the workpiece. Blanking, on the other hand, removes a workpiece from the primary material, making that removed component the desired workpiece or blank.



Embossing is a process for creating either a raised or recessed design in sheet metal, by pressing the raw blank against a die that contains the desired shape, or by passing the material blank through a roller die.



Coining is a bending technique wherein the workpiece is stamped while placed between a die and the punch or press, such as sheet metal fabrication. This action causes the punch tip to penetrate the metal and results in accurate, repeatable bends. The deep penetration also relieves internal stresses in the metal workpiece, resulting in no spring back effects.